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LIQUID CRYSTALS, 1988, VOL. 3, No. 10, 1411-1424 

Field effects in nematic liquid crystals in terms of catastrophe theory 

by G. DERFEL 
Institute of Physics, Technical University of t b d i ,  93-005 t b d i ,  Poland 

(Received 4 June 1987; accepted 17 February 1988) 

The field effects in nematic liquid crystal layers are reanalysed using catas- 
trophe theory. The layer with pretilted director orientation and obliquely applied 
magnetic field, the hybrid aligned nematic cell and twisted nematic structures are 
considered. The stable solutions are identified and transitions between them are 
specified. The results are in essential agreement with previous work. Some details 
concerning the behaviour near the threshold are revealed. 

1. Introduction 
The influence of external fields on liquid crystal layers is usually described by 

means of the Euler-Lagrange equations. The solutions, which are obtained typically 
by numerical methods, provide detailed quantitative information on the director 
distribution at any field strength. The calculations sometimes give several solutions 
under the same conditions, which are related to different values of the free energy of 
the layer. The aim of this paper is to apply the methods developed by catastrophe 
theory to resolving the problem of the stability of such solutions. 

Catastrophe theory, originated by Thom [I], is topological in nature. It stems from 
the theory of singularities of smooth mappings and from the theory of bifurcations 
of dynamical systems. According to Thom’s theorem, any family of smooth functions 
of n variables and r parameters is equivalent to one of a few archetypal forms. All but 
two of them involve a dependence on parameters and are called the catastrophes. This 
name reflects the fact that a smooth change of parameters can induce abrupt changes 
in the topological character of the function. The catastrophe predicts the number and 
kind of extremes of the considered function for any set of parameters, and the 
influence of the parameter variation on the disposition of the extremes. Seven 
elementary catastrophes result if r 6 4. (See [2] for a review.) In this paper, two 
of them will be applied. If n = 1 (one behaviour factor) and r = 2 (two control 
factors), the cusp catastrophe is encountered. This is the most productive catastrophe, 
suitable for the description of many physical systems [3]. It is easily recognizable 
and has a straightforward three dimensional representation. It was applied by 
Vasilyev [4] to the case of the pure twist deformation of the nematic layer in a 
magnetic field. Another catastrophe, called the butterfly, results if r = 4. Both 
of them belong to the same class of cuspoidal catastrophes and are described in the 
next section. In 43, the cusp is applied to the case of the pretilted nematic slab in 
oblique magnetic field. The hybrid aligned cell is considered in 44. It is found that 
there is no reason for a catastrophic behaviour. In $5, the twisted and supertwisted 
nematic cells are treated by means of the butterfly. Section 6 is devoted to a short 
discussion of the approach applied. 

In all cases the static deformations occurring in a magnetic field are taken into 
account. The magnetic field is chosen for the sake of simplicity as the relative 
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1412 G. Derfel 

diamagnetic anisotropy B = xa/xI is small and only terms linear in /I are important. 
The electric field is considered only for twisted structures. 

The qualitative features obtained by application of catastrophe theory are valid 
whereas the quantitative results are only approximate. 

2. The cusp and the butterfly catastrophes 
The standard form of the cusp catastrophe is 

f = x4/4 + ax2/2 + bx, (1) 
where x is a variable, a and b are parameters. The extremes of this function are given 
by 

x3 + ax -t b = 0. 

This yields the equation of the catastrophe manifold which is a surface in a, b and x 
coordinates, called the behaviour surface. Its shape is shown in figure 1. This surface 
possesses two folds for a < 0. The projection of the folds onto the ab plane (control 
plane) is the semicubical parabola 

4a3 + 27b2 = 0. 

It forms the bifurcation set of the catastrophe given by the set of solutions of the 
equations 

(2) 

(3) 

There is one singular point (0, 0) on the control plane, whereas the behaviour surface 
is smooth. There are three sheets of the behaviour surface between the branches of the 
curve, corresponding to three different real roots of equation (2),  two minima and one 
maximum. Only one minimum is retained exactly on the line (3). The other merges 
with the maximum and the inflection point arises. Outside the bifurcation set there is 
only one sheet due to one minimum. 

" t  

t 
0 

-0.5 

-1.0 - 0.4 0 0.4 
b- 

Figure 1. The geometry of the cusp catastrophe and its bifurcation set. 
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t 
0 

-1 

-0.5 0 0.5 

(b) 
c- 

Figure 2. The cross section of the behaviour manifold of the buterfly catastrophe for 
b = d = 0, (a) and the corresponding bifurcation set, (b) (M-maxima, m-minima). 

The butterfly catastrophe results from a function of the type 

f = x6/6 + ax4/4 + bx3/3 + cx2/2 + dx. 

x5 + ax3 + hx2 + cx + d 

( 5 )  

Its extremes are given by the condition 

= 0 (6) 

which yields the equation of the catastrophe manifold in five dimensions. As the 
dimension of the control space is four, it is convenient to work with two dimensional 
sections of it. The control space reduces then to the plane and the behaviour surface 
is easy to draw. Figure 2(a) presents its shape for b = d = 0 and figure 2(b) gives 
the section of the bifurcation set. It consists of the line c = 0 and one branch of the 
parabola c = a2/4 for a < 0. There are three regions of control plane characterized 
by a different number of extremes: (1) three minima, two maxima, (2) one maximum, 
two minima and (3) one minimum. There are five sheets of the behaviour surface 
overlying each other in the first case, three in the second and one in the last, 
corresponding to the real roots of equation (6). 

If the potential energy of the system has the form ( 1 )  or (9, we can make use of 
the diagram, like that shown in figures 1 or 2, and find the character of the equilibrium 
states and their evolution during variation of parameters. This approach is applied in 
the following sections. 

3. Pretilted nematic layer 
The geometry of the system considered in this section is shown in figure 3. This 

configuration was studied by Onnagawa and Miyashita [5] in the usual manner. The 
director is aligned in one direction with a preliminary tilt 8, on both container 
surfaces. The magnetic field of strength H is applied at an angle c1 to the normal to 
the layer. The free energy density in this case is given by 

g = ( k J 2 )  [I - Kcos2(8, + t ) ] ( d t / d ~ ) ~  - ( 1 / 2 ) ~ ~ H ~ s i n ~ ( 8 ,  + ( - MI, (7) 

where ( ( z )  = 8(z)  - 8,, and 8(z)  denotes the angle between the distorted director 
and the plates; K = 1 - k,/k,, k ,  and k3 are splay and bend elastic constants, 
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1414 G. Derfel 

Figure 3.  The definition of the angles describing the geometry of the nematic layer. 

respectively, and x, is the diamagnetic susceptibility anisotropy. If small deformations 
are assumed, only the first term in the Fourier expansion of t m ( z )  is significant; namely 

t(z) tmcos(nz/d), (8) 

where t, is the maximum value in the mid-plane of the layer. 
Using equations (7) and (8) we can calculate the free energy per unit area of the 

layer, G. For this purpose the free energy density is first expanded in a Taylor series 
of 5, in the vicinity of <, = 0, and then integrated. The resulting expression has the 
form 

where 

a ,  = -(nk3h/d)sin[2(8 - a)], 

a2 = (n2k,/4d){l - Kcos2eo - hcosp(e - 411, 
a3 = (nk3/3d)(Ksin28, + (4h/3)sin[2(O0 - a) ] } ,  

a4 = (n2k3/16d){Kcos280 + hcos[2(80 - @)I}, 
h = (H/Hb)2  and Hb = ( 7 ~ / d ) ( k ~ / ~ ~ ) l ” .  Only the reduced quantities K and h are 
necessary to compute tm,  therefore the following results are valid for arbitrary k, and 
d. The term a, is unimportant, as it can be removed by a suitable choice of zero energy 
level. It is evident, that if B0 = 0, a = 0 and h = 1 - K, then the coefficients, a,, a2 
and u3 are zero, whereas a4 # 0. According to the theorems of catastrophe theory, 
terms of order higher than four in equation (9) can be disregarded. Following the rules 
for the classification of functions into the forms of catastrophes systematized in [6], 
a new variable is introduced: 

x = (41a41)”4(tm + a3/4a4). (1 1) 

The energy G, truncated in this way can be written in the form of the cusp catastrophe 
(I ) ,  in which 

u = ( 8 ~ 2 ~ 4  - 3~:)/8a4(~4(’”, (12) 

b = ( 1 6 ~ 1 ~ :  + 2 ~ :  - 8~2~3a4) / (4 (~4I ) ’~~ .  (13) 
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Nematic field eflects as catastrophes 1415 

The behaviour of the director in the layer can be analysed by variation of the 
parameters a, O, ,  K or h. Each set of parameters defines the point (a, b) on the 
control plane and the corresponding values of 5,. In the following some particular 
situations are described. In every case, one of the parameters is varied while the others 
are fixed. As a consequence of this, a trajectory in control plane is obtained which 
determines the solution of the problem. The figures show only the essential parts of 
the trajectories and everywhere a4 > 0. However the trajectories may often have 
rather complicated shapes and spread far from the apex (0,O). 

For some particular ranges of the parameters, a4 may be negative and the dual 
cusp catastrophe results. Its behaviour surface has the same shape as the ordinary 
cusp. The directions of the a and h axes are, however, reversed and hence the middle 
sheet represents stable equilibria, while the upper and lower sheets represent unstable 
equilibria. If a4 = 0, the expansion of G is limited to third degree and the solutions 
of the resulting quadratic equation fit the solutions obtained for a4 # 0. 

3.1. a = e, 
This case was considered by Yamada [7]. Here the deformations of the layer are 

found for the variable magnetic field parameter h. Examples of the trajectories are 
shown in figure 4a, where the arrows indicate an increase of h. 

For a = 0, = 0 or a = 0, = n/2, the splay or bend deformations, respec- 
tively, are obtained. Since b = 0, the trajectories run along the a axis. Figure 4(b) 
shows the maximum distorsion angle 5, versus the reduced magnetic field H/Hb.  For 
a > 0, the only minimum is 5, = 0. The threshold magnetic field is reached and 
two non-zero, stable solutions appear in turn for a = 0. The threshold is given 
by h, = 1 - Kcos2e0 and takes the well-known values H, = (n/d)(kI/xa)”* and 

If a = 0, > 0 the trajectory has two common points with the bifurcation set: 
the point of intersection and the point of tangence. For the magnetic field increasing 
from zero the solution is due to the upper sheet of the behaviour surface: 5, = 0. If 

Hb = ( n / d )  ( k 3  / x a  

0.OL - 

O b  0.005 09 1.0 1.1 094 0.96 0.98 
H / H ~  

Figure 4. The trajectories (a) and the maximum distortion angle 5, versus the reduced 
magnetic field H/H,  (b). K = 0.2. 1: CI = 0, = 0, 2: CI = 0, = 44, 3: CI = 0, = 4 2 .  
The arrows in (a) indicate the increase of the field strength. Full line-minima, dotted line 
-maxima, dashed line-unavailable minima. 
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1416 G. Derfel 

the field reaches the value corresponding to the tangential point: h = 1 - KCOS’ O , ,  
i.e. H = &(I - Kcos’~,)”~, <, jumps to a value due to the lower sheet. If the 
magnetic field decreases, the jump takes place at the point of intersection and moves 
the solution back to the upper sheet, as shown in figure 4(b). The transition is 
therefore discontinuous and hysteresis appears. The opposite sign of 5, and the 
reverse direction of the jumps take place for a = 8 < 0. The trajectories due to both 
cases are symmetrical with respect to the a axis. 

3.2. a z e, 
This case was studied by use of the variational method by Motooka and Fukuhara 

[8]. The trajectories determined by the variable field paremter h are shown in 
figure 5 (a). Their shape is the same as for a = do, but they are shifted to the left if 
a < 0, and to the right if a > 8,. The (,,,(H/&) dependence is plotted in figure 5 (b). 
In general there is no threshold in this case, but if a exceeds B0 by a sufficiently small 
value, the shift to the right is also very small and the trajectory intersects the 
bifurcation set in three points. Considerable deformation results at point A and 
decays at point B. The function l,(H/&) has an S shape and a small hysteresis also 
exists. 

0 0.5 1.0 

b 

1 

0 .e 0 9 

H /Hb 

Figure 5. The trajectories (a) and the { , (H/H, , )  dependence (b)  for u # 0,. K = 0.5, 
Q0 = 0 .25~~ .  1: u = 0.250511, 2: u = 0.2495n, 3: c1 = 0.25411, 4: c1 = 0.246~.  In case 1, 
the considerable deformation results at point A and decays at point B. 

Two particular situations in the case a # 8, can be distinguished: 

a = 0, e, # 0. 

The magnetic field is applied normal to the layer of the pretilted nematic. The 
trajectory is, in its essential part, almost parallel to the a axis. There is no threshold 
(see figure 6 (a), (b), trajectory 1). 

a z 0, eo = 0. 

The planar nematic layer is under the influence of the oblique magnetic field. The 
trajectory 2 in figure 6 (a) defined by the variable h gives the solution analogous to the 
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Nematic field effects as catastrophes 1417 

-0.05 0 0.05 0.6 0.8 1.0 

b H/H,, 

JJP 

-0.5- 
oc= B0 

-0.02 0 0.02 
oc 

Figure 6 .  The trajectories (a), the t m ( H / H b )  dependence (b) and the cm(a) dependence (c) for 
GL z eo. K = 0.2. 1: eo = -0.01, a = 0, 2: eo = 0, a = -0.01, 3: eo = 0, h = 0.9, 
4: eo = 0, h = 0.75, 5: eo = 0.01, h = 0.9. 

preceding case shown in figure 6 (b). Trajectories 3, 4 and 5 for constant h and vari- 
able a are approximately parallel to the b axis. If H > H,, they intersect the bifur- 
cation set at two points. In figure 6(c), the dependence of 5, on the magnetic field 
direction a is shown, hysteresis phenomena are evidently present. Figure 6 (c)  presents 
only the central parts of the (,(a) plot. If a tends to n/2, Itrn\ reaches a maximum 
and then decays to zero. The centre of symmetry of the hysteresis curve is placed at 
cI = eo. 

4. Hybrid aligned nematic cell 
In this case the director distribution is described by the angle O(z). The orientation 

is planar at one plate and homeotropic at the other: Oo(-d/2) = 0; d0(d/2) = n/2. 
If the one-constant approximation is assumed: k ,  = k,  = k,  = k ,  the analytical 
expression for the function e(z)  is obtained as 

O(z) = ( 7 ~ ~ ) / ( 2 d )  + 4 4 .  (14) 

The energy of the layer deformed by a normal magnetic field is expanded in powers 
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1418 G. Derfel 

of 5,.  The expansion coefficients are: 

= n2h/4, 

a2 = n2/4, 

a3 = -n2h/8, 

a4 = 0, 

where h = (H/H,) ’ ,  H, = (n/d)(k/xa)”2. The second derivative of G ,  a2 ,  is always 
non-zero. The critical point is therefore non-degenerate and no catastrophe occurs. 
The expansion can be limited to second order and we can calculate the approximate 
solution for 5,: 

5, = - h / 2 .  (16) 

In agreement with [9], the deformation increases with the square of magnetic field 
intensity. 

5. Twisted nematic structures 
In this section, the general geometry of the twisted structure, commonly employed 

in liquid crystal displays, is considered. The director is tilted in the same sense at both 
boundary plates, which are parallel to the xy plane. The preferred directions on the 
plates do not coincide. The twist angle 4 between them and the tilt angle 0, can take 
arbitrary values. Initially the angle o between the yz  plane and the projection of the 
director onto the xy plane changes linearly with z from - 412 to 412. The magnetic 
field is applied perpendicular to the layer. The chirality of the nematic material is 
introduced and is measured by q = n/A, where A denotes the half of the pitch of the 
undistorted bulk material. Small deformations are assumed. Two angles are needed 
to characterize them: 5(z), defined by equation (8), and $(z) which measures the 
field-induced rotation of director around the z axis. For symmetry reasons, $(O) = 0 
and 

w = 4z/d + $,sin(2nz/d). (17) 

The free energy density in this case becomes a rather complicated expression 

g = (1/2) {[(k, cos2 0 + k3 sin2 O)(dO/dz)’ + cos2 O(k2 cos2 0 + k, sin2 t3)(dw/dz)’] 

- xaH2 sin2 8 + 2k2qcos2 O(dw/dz)}. (18) 

Expansion of equation (18) in a Taylor series in 5, and IC/, followed by integration 
gives the total energy per unit area of the slab in the form 

G = 00 + a 1 5 m  + ~ 2 5 ;  + a351 + 4 5 :  + + + . . + b I $ m < m  + h $ m 5 ;  

+ 63$,t1 + b4$,5: + bs$ m m  t5 + . . . + c O m  $’ + c I m m  $2 4 + c 2 m m  $2 5’ 
+ c 3 $ t t l  + c4$f5: + . . . . (19) 

The angle t+hm appears in this expansion only to first and second degree. By use of the 
algorithm given in [6], this expansion can be transformed into the normalized form, 
in which the essential variable is separated from the inessential one. It turns out that 
5 ,  is essential and hence G is equivalent to the sum of a power series in 4, and of 
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Nematic field effects as catastrophes 1419 

+ 6(kb - k,) sin2 28,]}, 

a, = (16nkI/225d)sin28,{1.25(1 - k,) - h - 2k,(d/L)(+/n) 

+ (4/n)’[(16kb - 17k,)cos28, - (16k, - I%,) sin228,,]}, 

a6 = (n2k,/144d){1.5(1 - kb)cos28, - hc0~28,  - 2k(d/L)(4/n)COS28, 

+ (41/n)’[(16k, - 17k,)cos48, + (16k, - 15k,)sin48, 

- 1’5(kh - k,)sin228,] - k,(d/L)cos28,}, 

C, = (n2k,  / d ) ( k ,  cos 28, + k, sin2 8,) COS’ B0,  
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1420 G. Derfel 

and 

k, = k2/k,, kb = k3/k,. 

These coefficients depend on several system parameters namely O0, kb, k,, d/l,  4, 
and h. It is possible to find some relations between them, which cause the coefficients 
a,, a2,  a3, a;, a, to vanish. Indeed, if 8, = 0, h = h, = 1 + (4/n)2(kb - 2k,) - 
2k,(d/4 ( 4 / 4  and 

4 h  = ((s - 2)(d/l) f {(d/l)2(s - 2)2 

+ (s2 - s + l)[s - (d/n)2]}”2}/(.+ - s + l), (24) 
where s = kb/k,, the first non-zero coefficient is u;. The expansion may be limited 
therefore, to the sixth degree, and, by use of the new variable 

x = ( 6 l ~ i I ” ~ ( 5 ~  + 4 / 6 4 )  (25) 
transformed into the standard form of the butterfly catastrophe (5). (In the cases 
considered in $3, the coefficient a, cannot vanish together with a,, a2 and a3 and so 
gives rise to the cusp catastrophe.) The control parameters are given by 

u = (1 2 4 4  - 5~:)/34(6 I U; 

(26) 
b = (54  - ~ ~ u ; u , u ;  + 2 7 ~ , ~ ~ ~ ) / 9 ~ ~ ~ ( 6 1 a ~ I ) ’ ~ ~ ,  
c = ( - 5 ~ :  - 24a;a:aL - 7 2 ~ , a , a ~ ~  + 144~ ,a i~ ) /72~~~(61a i ( ) ”~ ,  

d = (a: - ~u ;u :u~  + 2 7 ~ 3 ~ : ~ : ~  - 1 0 8 ~ ~ ~ ~ ~ ; ~  + 324~,~;~)/324~~~(6~~~1)”~. 
The values of 5, and $m can be derived from the minimalization conditions. In 

particular from dG/d$, = 0 we obtain 

$m = - (b,  t m  + b2ti  + b3 t i  + b45: + b,ti)/2(co + CI t m  

+ c 2 t i  + c 3 t i  + c45:), (27) 
where 

6 ,  = 

b, = 

b, = 

c, = 

cj = 

c4 = 

(4nk, / 3 d )  sin 28, {((b/n)[(kb - 2k,) cos2 eo - kb sin2 e,] - k,(d/l)}, 

(16nk,/15d)sin2e0{(~/~)[(5k, - 4kb)cos2e0 + (4kb - 3k,)sin2e,] 

+ k l ( d / 4 } *  

(64~k,/315d)sin28,{(4/n)[(16kb - 17k,)cos2e, + (16kb - 15k,)sin2eo] 

- kSd/419 
(28nk, /15d) sin 28,[(kb - 2k,) cos2 8, - kb sin2 e,], 

(304711, /315d) sin 28,[(5k, - 4kb)cos2 eo + (4kb - 3k,) sin2 e,], 

(7n2kl/48d)[(5k, - 4kb)COS8, - (4kb - 3k,)Sin48, + 6(kb - k,)sin228,]. 

In the following, the angles 5, and $, are presented as a function of the reduced 
magnetic field in several distinct cases. 

5.1. e, = o 
Zero tilt offers a significant simplification of the problem. Since b = d = 0, it is 

easy to draw the trajectories on the control plane ac. In figure 7 (a) some examples of 
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0 

-0.2 

1 .o 1.5 1.7 2 .o 
H/H, or E /E, 

Figure 7. The trajectories (a), the deformation angles 5, (b), and $,,, (c) as a function of the 
reduced field for the twisted structures. kb = 1.4, k, = 0.4,6, = 0. 1: 4 = z/2, d / l  = 0, 
7 = 0, 2: 4 = ~ / 2 ,  d / l  = 0, y = 1, 3: 4 = 1 . 5 ~ ,  d / l  = -1.5, y = 0, 4: 4 = I.57~, 
d / l  = -1.5, 7 = 1. 

trajectories are shown. They start in the region, where one minimum x = 0 (5, = 0) 
exists. The director distribution remains undistorted until the line c = 0 is achieved 
which defines the threshold field 

h, = 1 + (41.)*(kb - 2k,) - 2 k , ( d / W # M  (28) 

Above this threshold, there are two symmetrical minima and one maximum. Under 
certain circumstances the trajectory intersects the branch of the parabola c = a2 /4  
and runs across the region with five extremes. Their values can be obtained from 
equation (6), 

XI = 0, (29) 

x2,3,4,5 = k {[- a k (a’ - 4 ~ ) ~ ” ] / 2 } ~ ” .  

For the field increasing from zero, the only solution 5, = 0 is due to the middle, flat 
sheet of the behaviour surface. At the threshold, 5, jumps to one of the two values 
corresponding to the exterior sheets. If the field decreases, the jump occurs when the 
trajectory meets the parabola and the deformation disappears, in consequence 
hysteresis takes place. 

The hysteresis of 5,(H/H,) dependence is the most characteristic phenomenon in 
the behaviour of the systems considered. It occurs if the threshold c = 0 is achieved 
at a < 0. This gives the condition 

4/n  3 { ( s  - 2 ) ( d / l )  k {(d/A)’(S - 2)’ + (s’ - s + 1) 

x [ S  - (d/A)2]}1’2}/(? - s + I), (31) 
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1422 G. Derfel 

for hysteresis. For 4 = n/2 and d/A = 0, it is identical with the inequality given by 
Leslie, [lo]: kb/k, > 4.792. 

For liquid crystal displays, the small permittivity anisotropy approximation, 
justified for the magnetic field, is no longer valid. If we take into account the usually 
significant relative dielectric anisotropy y = E, / E ~ ,  rather complicated expressions for 
a, . . . a6 are obtained. They have the applicable representation only if 8, = 0: 

(32) 

(33) 

I = (n2k,/4d)[1 - - 2k,(d/A)(4/n) + ($/n)’(kb - 2kr)1, 

U4 = (7C2kl/16d)[(kb - 1) + e(l + 7) + 2k,(d/A)(4/7t) 

+ (4/n)’(5kr - 4kb)1, 
u6 = (n2kl/144d)[1.5(1 - kb)  - e(1 - 4y + 4.3’ )  - 2kr(d/A)(4/n) 

+ (4/.)’(16kb - 17k,)l, 

where e = (E/E,)’ and E, = ( n / d )  ( k ,  /E ,E , )” ’ .  As a result condition (31), generalized 
for the electric field, takes the form 

4/n 2 {(s - y - 2)(d/A) f {(d/A)’(s - y - 2)’ + [s’ - s(l + y )  + 1 + 2yl 

x [s - (41)’ + y/k,]}1’2} [s’ - s(l + y )  + 1 + 2yl-I. 

This inequality is equivalent to the criterion given by Raynes [l  I]. 
In figures 7 (b) and 7 (c) the results of calculations of 5, and t,bm are exemplified. 

1.0 1.5 2 .o 

H / H s  

Figure 8. The deformation angles 5, (a), and $,,, (b) as a function of the reduced field for the 
pretilted twisted structures. kh = 1.4, k, = 0.4, y = 0. 1 :  4 = ni2, din = 0, 0, = 0.01, 
2: 4 = 1.5n, din = - 1.5, On = 0.01, 3 :  4 = 1.5n, din = - 1.5, On = 0-3. Curve 1 in 
(b) is described by the left scale, curves 2 and 3 by the right scale. 
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Nematic field efects as catastrophes 1423 

5.2. 8, # 0 
It is impossible to derive analytical expressions of the type given in equation (3 1) 

for 0, # 0. For this application, the analysis of trajectories in four-dimensional 
control space is impracticable. Therefore only the plots of the deformation angles are 
shown in figures 8 (a )  (b). The non-zero tilt cancels the threshold. There is l, # 0 even 
in the absence of the field, as shown by Fraser [12]. The criteria (31) or (33) for 
hysteresis are approximately valid for small tilt. 

6.  Discussion 
All of the problems studied here have been resolved earlier by other authors with 

the aid of traditional variational methods. The reanalysis of them by means of 
catastrophe theory gives, above all, a clarity in the recognition of stable solutions and 
of transitions between them. Liquid crystal layers belong to mechanical systems which 
obey the delay convention: they remain in their minimum of potential energy until this 
minimum exists. Application of this rule to the movement of a point on the behaviour 
surface over the corresponding trajectory yields the useful stability criterion. The 
theorems of catastrophe theory also determine strictly which terms of the Taylor 
series are significant. 

The qualitative results of the calculations agree generally with that obtained in the 
original studies. However, some minor differences referred to this discussion can be 
noticed. The hysteresis shown in figure 4 (b) was omitted in [5], and different expres- 
sions for the function C;,(H/H,) were obtained in [7] because of the improper trunc- 
ation of the power series. The expansion of the energy in a series of 5, was sometimes 
used in analogy to the Landau expansion in the neighbourhood of a second order 
phase transition as in [13] and [14]. Similar results to these presented here were 
obtained for c1 # 0, and 8, = 4 2  in [13]. 

The energies of the layers considered were calculated by use of an approximation 
justified only for small distorsions: the angles l ( z )  and $(z) were determined by 
functions of sinusoidal shape (8) and (17). The Taylor expansion and the energy 
function are equivalent only locally, i.e. sufficiently close to &,, = 0 and Ic/, = 0. 
Therefore only pairs of small values of 5, and $,,, are acceptable. In particular the 
predicted range of bistability of supertwisted structures disagrees with data from [l I], 
because the distorsion takes rather high values. 

All of the essential features of the director behaviour found here are well-known 
from numerous experimental studies, e.g. [5], [13], [15], [16] or from applications 
[17], [18]. Some of the predicted effects seem however to be too subtle to be detected, 
(for instance the hysteresis shown in figures 5 and 6). 

Throughout the paper the positive anisotropies xa > 0 or E,  > 0 were assumed. 
The opposite sign can also be taken into consideration by use of the reverse sign of 
the field parameters h or e. 

For the homogeneously oriented nematic with an external field applied normal to 
the boundary plates (or for other analogous geometries), the threshold is predicted. 
The implication of catastrophe theory is that such layers belong to the structurally 
unstable systems. It is rather difficult to achieve the threshold behaviour strictly. Any 
fluctuations of alignment and other imperfections, unavoidable in experimental 
realizations of such systems, create pretilted layers in an oblique field, for which no 
threshold exists. Small changes in geometry do not affect this continuous increase of 
the distorsion of the director field: the system is structurally stable. An apparent 
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threshold may appear as the trajectories may run extremely close to that for perfect 
geometry. 
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